

- Warsaw-4-PhD School
- Doctoral studies
Project FNP TEAM
Groups - TeraGaN |
The research project Terahertz Sensor Based on Topological Materials in TEAM programme of the Foundation for Polish Science.
Research Team: |
|||||
Prof. Wojciech Knap |
Dr. Grzegorz Cywiński |
||||
|
|||||
Dr. Jacek Przybytek |
Dr. Elham Javadi |
Dr. Ivan Yahniuk (PhD thesis defense 8.11.2021) |
|||
|
|
||||
Dr. Dmitriy Yavorskiy (PhD thesis defense 15.11.2021) |
|
|
|||
|
|||||
Former TEAM member staff |
|||||
|
|
|
|
||
M. Sc. Małgorzata M. Bąk (thesis defense date 18.09.2018) |
M. Sc. Konrad Puźniak (thesis defense |
Dr. Dmytro B. But |
|
Amount awarded TEAM/2016-3/25 (POIR.04.04.00-00-3D76/16): 3 498 988 PLN
- Project goal
The main objective of the project is creation in Poland at Institute of High Pressure Physics PAS (IHPP PAS) a TEAM of scientists that will explore high frequency (Terahertz) properties/physics and applications of topological insulators for terahertz sensors.
- Innovation of the project
To reach such devices the project propose the research on innovative HgCdTe and GaSb/InAs structures overcoming existing up today problems: i) having TI states preserved up to elevated temperatures (up to 300 K) ii) allowing fast electrical switching (on/off) of TI states iii) explore GaSb/InAs quantum TI structures that can be fabricated using a standard semiconductor processing.
- What is within it to be achieved / created - what applications can have the results of the project and in what areas of our daily lives these results may find use
(eg research will help to generate new medicines, streamline industrial processes, etc.)
Despite the long time from its discovery, there exists still many important problems hindering real world applications of topological isolators. The main problems are: i) TI states are preserved only at cryogenic temperatures (below 10 K); ii) there are no structures/mechanisms allowing fast electrical switching (on/off) of TI states iii) until now most of the discoveries are made using HgTe/CdTe semiconductor materials that do not allow standard high temperature device processing. The general scientific objective of this project is to research on novel two-dimensional structures possessing topological insulator phase that overcomes these existing problems. These novel topological insulators will be obtained special arrangements of III-V or II-VI semiconductor quantum wells. We will search for the best TI semiconductor structures by growing different structures and by tuning the energy band structure with hydrostatic pressure. We will particularly focus on the investigation of hydrostatic pressure driven evolution of basic properties because it allows accelerate research on finding the best parameters (energy band structure, energy and momentum relaxation times, and photon absorption and emission coefficients) in different topological phases without use of very time and budget consuming repetitive growth of the multiple structures. We will use “optical” excitations in Terahertz frequencies range as the main experimental tool. The measurements of inter- and intra-Landau level transitions, lying in THz range, as well as THz photoconductivity will be used to probe the band structure evolution. Independently, research on new THz plasma oscillation/instabilities in different topological insulators phases will be explored as an independent important scientific objective of the project. Thanks to these research we want to answer the basic science questions about the universality of the physical model of 2D TI and about mechanisms of breaking of the topological protection. We want also to answer the question how specific TI states and Dirac fermions (linear dispersion) in TI may modify/influence the THz plasma wave oscillations and instabilities discovered recently in nanometer size 2D structures. Acquired answers for questions mentioned above will provide basis for realizing new high frequency devices based on topological materials. To reach such devices the project propose the research on innovative HgCdTe and GaSb/InAs structures overcoming existing up today problems: i) having TI states preserved up to elevated temperatures (up to 300 K) ii) allowing fast electrical switching (on/off) of TI states iii) explore GaSb/InAs quantum TI structures that can be fabricated using a standard semiconductor processing. Preliminary research that show importance, feasibility and methodology has already started in the frame of international French/Polish/Russian “LIA-TERAMIR” [47]. Feasibility of main project objectives is already documented by multiple high impact international journals publications of the project author [A1, A24]. LIA-TERAMIR will also serve for the present project as the main frame of international collaboration providing, via partners from France and Russia, a privileged access to unique material/samples technology and equipment. At the same time the project will allow to increase the research potential in Poland, at IHPP PAS, by building by world-class leaders, the TEAM having strong international collaborations and performing basic/applied physics research on TI structures (TERA-TEAM) in view of demonstration of innovative TI based high frequency devices as well as terahertz radiation sensors.
Below you can find an example of theoretical modelling of HgTe/CdHgTe quantum wells and pressure phase diagram for such structures.
Figure 1. Typical band structure of (001)-oriented HgTe QWs at zero temperature and different QW width: (a) BI phase, d< dc, (b) Dirac cone, d = dc, (c) TI phase d >dc, (d) SM phase, d > dSM. Electron-like E1 subband is shown in blue, while red curves correspond to the heavy-hole subbands. Last panel (e) on the right side shows the pressure phase diagram for single HgTe QWs. The shaded region corresponds to the semimetal phase SM. Open grey region conforms to the TI states. Results for two temperatures 0K and 100K are presented.
Project Publications
- An effective method for antenna design in field effect transistor terahertz detectors
Zhang Bo-Wen, Yan Wei, Li Zhao-Feng, Bai Long, Cywinski Grzegorz, Yahniuk Ivan, Szkudlarek Krzesimir, Skierbiszewski Czesław, Przybytek Jacek, But Dmytro B., Coquillat Dominnique, Knap Wojciech, Yang Fu-Hua
The Journal of Infrared and Millimeter Waves (JIRMW) 37, 398-392, (2018)
IF 0.387 - Electrically controlled wire-channel GaN/AlGaN transistor for terahertz plasma applications
G. Cywiński, I. Yahniuk, P. Kruszewski, M. Grabowski, K. Nowakowski-Szkudlarek, P. Prystawko, P. Sai, W. Knap, G. S. Simin, and S. L. Rumyantsev
Appl. Phys. Lett. 112, 133502 (2018)
IF 3.411 - THz detectors based on Si-CMOS technology field effect transistors – advantages, limitations and perspectives for THz imaging and spectroscopy
J. Marczewski, D. Coquillat, W. Knap, C. Kolacinskia, P. Kopyt, K. Kucharski, J. Lusakowski, D. Obrebski, D. Tomaszewski, D. Yavorskiy, P. Zagrajek, R. Ryniec, N. Palka
Opto-Electronics Review, Volume 26, Issue 4, Pages 261-269 (2018)
IF 1.156 - Magnetoconductivity and Terahertz Response of a HgCdTe Epitaxial Layer
Dmitriy Yavorskiy, Krzysztof Karpierz, Michał Baj, Małgorzata M. Bąk, Nikolai N. Mikhailov, Sergey A. Dvoretsky, Vladimir I. Gavrilenko, Wojciech Knap, Frederic Teppe and Jerzy Łusakowski
Sensors 2018, 18, 4341;
doi:10.3390/s18124341
IF=2.475 - AlGaN/GaN field effect transistor with two lateral Schottky barrier gates towards resonant detection in sub-mm range
P. Sai, D. B. But, I. Yahniuk, M. Grabowski, M. Sakowicz, P. Kruszewski, P. Prystawko, A. Khachapuridze, K. Nowakowski-Szkudlarek, J. Przybytek, P. Wiśniewski, B. Stonio, M. Słowikowski, S. L. Rumyantsev, W. Knap and G. Cywiński
Semiconductor Science and Technology 34 (2019) 024002
IF 2.28 - Magneto-transport in inverted HgTe quantum wells
Ivan Yahniuk, Sergey S. Krishtopenko, Grzegorz Grabecki, Benoit Jouault, Christophe Consejo, Wilfried Desrat, Magdalena Majewicz, Alexander M. Kadykov, Kirill E. Spirin, Vladimir I. Gavrilenko, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Dmytro B. But, Frederic Teppe, Jerzy Wróbel, Grzegorz Cywiński, Sławomir Kret, Tomasz Dietl & Wojciech Knap
npj Quantum Materials 4, Article number: 13 (2019)
IF 6.562 - Magnetoconductivity of a Mercury Cadmium Telluride Resonant THz Detector
M. Bąk, D. Yavorskiy, K. Karpierz, J. Łusakowski, D. But, J. Przybytek, I. Yahniuk, G. Cywiński, W. Knap, F. Teppe, S. Krishtopenko, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko
Acta Physica Polonica A 134 page 973 (2018)
IF 0.857 - Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons
D. B. But, M. Mittendorff, C. Consejo, F. Teppe, N. N. Mikhailov, S. A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski & M. Orlita
Nature Photonics 13, 783–787(2019)
IF 31.583 - Low frequency noise and trap density in GaN/AlGaN field effect transistors
P. Sai, J. Jorudas, M. Dub, M. Sakowicz, V. Jakštas, D. B. But, P. Prystawko, G. Cywinski, I. Kašalynas, W. Knap and S. Rumyantsev
Appl. Phys. Lett. 115, 183501 (2019)
IF 3.521 - Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells as Terahertz Detectors for High Magnetic Field Applications
Dmitriy Yavorskiy, Maria Szoła, Krzysztof Karpierz, Rafał Bożek, Rafał Rudniewski, Grzegorz Karczewski, Tomasz Wojtowicz, Jerzy Wróbel and Jerzy Łusakowski
MDPI Appl. Sci. 2020, 10, 2807
IF 2.474 - Polarization of Magnetoplasmons in Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells
Dmitriy Yavorskiy, Maria Szoła, Krzysztof Karpierz, Rafał Rudniewski, Rafał Bożek, Grzegorz Karczewski, TomaszWojtowicz, Jerzy Wróbel and Jerzy Łusakowski
MDPI Materials 2020, 13, 1811
IF 3.057 - Symmetry breaking and circular photogalvanic effect in epitaxial CdxHg1-xTe films
S. Hubmann, G. V. Budkin, M. Otteneder, D. But, D. Sacré, I. Yahniuk, K. Diendorfer, V. V. Bel’kov, D. A. Kozlov, N. N. Mikhailov, S. A. Dvoretsky, V. S. Varavin, V. G. Remesnik, S. A. Tarasenko, W. Knap, and S. D. Ganichev
PHYSICAL REVIEW MATERIALS 4, 043607 (2020)
IF 3.337 - Terahertz Magnetospectroscopy of Cyclotron Resonances from Topological Surface States in Thick Films of CdxHg1‐xTe
Maximilian Otteneder, Daniel Sacré, Ivan Yahniuk, Grigory V. Budkin, Kilian Diendorfer, Dmitry A. Kozlov, Ivan A. Dmitriev, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Vasily V. Bel'kov, Wojciech Knap, Prof. Sergey D. Ganichev
Phys. Status Solidi B 2020, 2000023
IF 1.481 - Enhanced Sub-wavelength Focusing by Double-Sided Lens with Phase Correction in THz Range
M. Rachon, K. Liebert, D. B. But, P. Zagrajek, A. Siemion, A. Kolodziejczyk, M. Sypek, J. Suszek
Journal of Infrared, Millimeter, and Terahertz Waves
https://doi.org/10.1007/s10762-020-00696-0
IF 1.765 - Graphene Epoxy-Based Composites as Efficient Electromagnetic Absorbers in the Extremely High-Frequency Band
Zahra Barani, Fariborz Kargar, Konrad Godziszewski, Adil Rehman, Yevhen Yashchyshyn, Sergey Rumyantsev, Grzegorz Cywiński, Wojciech Knap, and Alexander A. Balandin
ACS Appl. Mater. Interfaces 2020, 12, 25, 28635–28644
https://doi.org/10.1021/acsami.0c06729
IF 8.758 - Room-Temperature Amplification of Terahertz Radiation by Grating-Gate Graphene Structures
Stephane Boubanga-Tombet, Wojciech Knap, Deepika Yadav, Akira Satou, Dmytro B. But, Vyacheslav V. Popov, Ilya V. Gorbenko, Valentin Kachorovskii, and Taiichi Otsuji
Phys. Rev. X 10, 031004
IF 12.577 - Observation of Terahertz-Induced Magnetooscillations in Graphene
Moench, Erwin; Bandurin, Denis A.; Dmitriev, Ivan A.; Phinney, Isabelle Y.; Yahniuk, Ivan; Taniguchi, Takashi; Watanabe, Kenji; Jarillo-Herrero, Pablo; Ganichev, Sergey D.
NANO LETTERS Volume: 20 Issue: 8 Pages: 5943-5950
doi:10.1021/acs.nanolett.0c01918
IF 11.238 - Graphene as a Schottky Barrier Contact to AlGaN/GaN Heterostructures
Maksym Dub, Pavlo Sai, Aleksandra Przewłoka, Aleksandra Krajewska, Maciej Sakowicz, Paweł Prystawko, Jacek Kacperski, Iwona Pasternak, Grzegorz Cywiński, Dmytro But, Wojciech Knap and Sergey Rumyantsev
MDPI Materials 2020, 13, 4140
https://doi.org/10.3390/ma13184140
IF 3.057 - Effect of ultraviolet light on 1/f noise in carbon nanotube networks
A.Rehman, S.Smirnov, A.Krajewska,D.B.But, M.Liszewska, B.Bartosewicz, K.Pavlov, G.Cywinski, D.Lioubtchenko, W.Knap, S.Rumyantsev
Materials Research Bulletin 134 (2021) 111093
DOI: 10.1016/j.materresbull.2020.111093
IF 4.019 - Generation-recombination and 1/f noise incarbon nanotube networks
A. Rehman, A. Krajewska, B. Stonio, K. Pavlov, G. Cywinski, D. Lioubtchenko, W. Knap, S. Rumyantsev,and J. M. Smulko
Appl. Phys. Lett. 118, 242102 (2021);
https://doi.org/10.1063/5.0054845
IF 3.971 - Terahertz Sources Based on Emission from a GaAs/(Al,Ga)As Heterostructure at Cryogenic Temperatures
D. Yavorskiy, M. Szoła, T. Tarkowski, J. Wróbel, P. Nowicki, V. Umansky, W. Knap, and J. Łusakowski
PHYSICAL REVIEW APPLIED 16, 044001 (2021)
https://doi.org/10.1103/PhysRevApplied.16.044001
IF 4.985