Project TeamTech
„Tunnel junction and its applications for GaN based optoelectronics”

Programme Description

Project is carried out within the TeamTech programme of the Foundation for Polish Science. Programme TEAM-TECH is co-funded in the framework of Program Operacyjny Inteligentny Rozwój (PO IR) oraz Foundation for Polish Science. Programme TEAM-TECH offers grants for research teams headed by leading scientists carrying out R&D projects related to a new product or production process (technological or manufacturing) of significant importance for the economy.


Project Goal

New concept of p-n tunnel junctions and their application in novel optoelectronic GaN-based devices will be investigated. Tunnel junctions may be applied to multicolor LEDs, vertical laser diodes, high power laser diode arrays, efficient solar cells or vertical n-p-n transistors. These devices will be fabricated using plasma assisted molecular beam epitaxy.

The project will involve collaboration between the Institute of High Pressure Physics Polis Academy of Sciences, Faculty of Physics Warsaw University, Faculty of Physics Wrocław University of Technology, Technical Universities of Madrid and Montpellier and TopGaN company, that develops commercial nitride laser diode solutions.

The innovative concept proposed in the project is based on the unique construction of the p-n tunnel junction that provides high tunneling efficiency through the junction minimizing its resistivity. The concept makes use of very high electric fields present in wurtzite crystal structure that modify the nitride tunnel junctions properties.

We will aim at fabrication edge-emitting laser diodes emitting at 480-490 nm (DFB – Distributed Feedback) and cascade multicolor LEDs. We will investigate the possibility of the application of tunnel junctions in monolithic vertical cavity surface emitting laser diodes (VCSELs).

Scientific results obtained in the Project will be commercialized in TopGaN company that will support the scientists in laser diodes and LEDs processing.


Research Team

Research team of our TeamTECH project consists of experts in MBE, laser physics, modelling and laser processing:

prof dr hab. Czesław
Skierbiszewski
dr inż. Grzegorz
Muzioł
dr inż. Marta
Sawicka
dr inż. Marcin
Siekacz
mgr Anna
Feduniewicz-Żmuda
mgr inż. Krzesimir
Nowakowski-Szkudlarek
mgr inż. Maciej
Mikosza
mgr inż. Mateusz
Hajdel
inż. Mikołaj
Żak
inż. Julia
Sławińska
inż. Mikołaj
Chlipała
mgr inż. Krzysztof
Gołyga




















































International Collaboration

Project is carried out in collaboration with:












Publications

Project is carried out from 2017 to 2023

Project results are published in:

  1. Laser diodes grown on porous GaN by plasma-assisted molecular beam epitaxy By: N. Fiuczek, M. Hajdel, A. Kafar, G. Muziol, M. Siekacz, A. Feduniewicz-Żmuda, O. Gołyga, C. Skierbiszewski, M. Sawicka, Optical Materials Express Vol. 13, Issue 5, pp. 1201-1210 (2023), DOI.org/10.1364/OME.485588
  2. Ion implantation of tunnel junction as a method for defining the aperture of III-nitride-based micro-light-emitting diodes By: J. Slawinska, G. Muziol, M. Siekacz, H. Turski, M. Hajdel, M. Zak, A. Feduniewicz-Zmuda, G. Staszczak, and C. Skierbiszewski, Optics Express Vol. 30, Issue 15, pp. 27004-27014 (2022) Published July 2022
  3. Impact of Interfaces on Photoluminescence Efficiency of High-Indium-Content (In, Ga)N Quantum Wells By: P. Wolny, H. Turski, G. Muziol, M. Sawicka, J. Smalc-Koziorowska, J. Moneta, M. Hajdel, A. Feduniewicz-Żmuda, S. Grzanka, R. Kudrawiec, C. Skierbiszewski, Phys. Rev. Applied 19, 014044 (January 2023), DOI: 10.1103/PhysRevApplied.19.014044
  4. Evolution of a dominant light emission mechanism induced by changes of the quantum well width in InGaN/GaN LEDs and LDs By: K. Pieniak, W. Trzeciakowski, G. Muzioł, A. Kafar, M. Siekacz, C. Skierbiszewski, and T. Suski, Optics Express 29, 40804-40818 (2021)
  5. Hybrid electroluminescent devices composed of (In,Ga)N micro-LEDs and monolayers of transition metal dichalcogenides By: K. Oreszczuk, J. Slawinska, A. Rodek, M. Potemski, C. Skierbiszewski, P. Kossacki, Nanoscale 14(46): 17271-17276 (November 2022). Doi.org/10.1039/D2NR03970B
  6. Electrically pumped blue laser diodes with nanoporous bottom cladding By: M. Sawicka, G. Muziol, N.Fiuczek, M.Hajdel, M. Siekacz, A. Feduniewicz-Żmuda, K. Nowakowski-Szkudlarek, P. Wolny, M. Żak, H. Turski, C. Skierbiszewski.. Opt. Express 30 (February 2022) DOI.org/10.1364/OE.454359
  7. Electrochemical etching of p-type GaN using a tunnel junction for efficient hole injection By: N. Fiuczeka, M. Sawicka, A. Feduniewicz-Żmuda, M. Siekacz, M. Żak, K. Nowakowski-Szkudlarek, G. Muzioł, P. Wolny, J.J. Kelly, C. Skierbiszewski, Acta Materialia 234(15):118018 (May 2022) DOI.org/10.1016/j.actamat.2022.118018
  8. Bottom tunnel junction-based blue LED with a thin Ge-doped current spreading layer By: M. Chlipała, .H. Turski, M. Żak, G. Muziol, M. Siekacz, K. Nowakowski-Szkudlarek, N. Fiuczek, A. Feduniewicz-Żmuda, J. Smalc-Koziorowska, C. Skierbiszewski, Appl. Phys. Lett. 120, 171104 (April 2022); DOI.org/10.1063/5.0082297
  9. Role of Metallic Adlayer in Limiting Ge Incorporation into GaN By: H. Turski, P. Wolny, M. Chlipala, M. Sawicka, A. Reszka, P. Kempisty, L. Konczewicz, G. Muziol, M. Siekacz, C. Skierbiszewski, Materials 15, 5929 (August 2022) doi.org/10.3390/ma15175929
  10. III-nitride optoelectronic devices containing wide quantum wells—unexpectedly efficient light sources By: G. Muziol, M. Hajdel, M. Siekacz, H. Turski, K. Pieniak, A. Bercha, W. Trzeciakowski, R. Kudrawiec, T. Suski, and C. Skierbiszewski, Jpn. J. Appl. Phys. 61(2022) 1.Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs By: M. Hajdel, M. Chlipała, M. Siekacz, H. Turski, P. Wolny, K. Nowakowski-Szkudlarek, A. Feduniewicz-Żmuda, C. Skierbiszewski, and G. Muziol Materials 15, 237 (2022)
  11. GaN-based bipolar cascade lasers with 25 nm wide quantum wells By: J. Piprek, G. Muziol, M.Siekacz, C. Skierbiszewski, OPTICAL AND QUANTUM ELECTRONICS Vol: 54 Issue: 1 Article Number 62, (January 2022) DOI10.1007/s11082-021-03455-0
  12. Dependence of InGaN quantum well thickness on the nature of optical transitions in LEDs By: M. Hajdel, M. Chlipała, M. Siekacz, H. Turski, P. Wolny, K. Nowakowski-Szkudlarek, Anna Feduniewicz-Zmuda, C. Skierbiszewski, G. Muziol; MDPI Materials 2022, 15, 237 (December 2021) doi.org/10.3390/ma15010237
  13. Tunnel Junctions with a Doped (In,Ga)N Quantum Well for Vertical Integration of III-Nitride Optoelectronic Devices By M. Żak, G. Muziol, H. Turski, M. Siekacz, K. Nowakowski-Szkudlarek, A. Feduniewicz-Żmuda, M. Chlipała, A. Lachowski, and C. Skierbiszewski, Physical Review Applied 15, 024046 (2021)
  14. Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction By: K. Pieniak, M. Chlipala, H. Turski, W. Trzeciakowski, G. Muziol, G. Staszczak, A. Kafar, I. Makarowa, E. Grzanka, S. Grzanka, C. Skierbiszewski, and T. Suski, Optics Express 29, 1824-1837 (2021).
  15. Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy By: G. Muziol, M. Hajdel, H. Turski, K. Nomoto, M. Siekacz, K. Nowakowski-Szkudlarek, M. Żak, D. Jena, H. G. Xing, P. Perlin, and C. Skierbiszewski Optics Express 28, 35321-35329 (2020)
  16. Nitride light-emitting diodes for cryogenic temperatures By: M. Chlipala, H. Turski, M. Siekacz, K. Pieniak, K. Nowakowski-Szkudlarek, T. Suski, C. Skierbiszewski_ OPTICS EXPRESS, Volume: 28, Issue: 20, Pages: 30299-30308, Published: SEP 28 2020 10.1364/OE.403906
  17. Vertical Integration of Nitride Laser Diodes and Light Emitting Diodes by Tunnel Junctions By: M. Siekacz, G. Muziol, H. Turski, M. Hajdel, M. Żak, M. Chlipała, M. Sawicka, K. Nowakowski-Szkudlarek, A. Feduniewicz-Żmuda, J. Smalc-Koziorowska, S. Stańczyk, C. Skierbiszewski, Electronics, 9 1481 (2020)10.3390/electronics9091481
  18. Enhanced injection efficiency and light output in bottom tunnel-junction light-emitting diodes By: S. Bharadwaj, J. Miller, K. Lee, J. Lederman, M. Siekacz, HL. Xing, D. Jena, C. Skierbiszewski, H . Turski, OPTICS EXPRESS, Volume: 28, Issue: 4, Pages: 4489-4500, Published: FEB 17 2020 [10.1364/OE.384021] (https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-4-4489&id=426518)
  19. Inhomogeneous broadening of optical transitions observed in photoluminescence and modulated reflectance of polar and non-polar InGaN quantum wells By: M. Jarema, M. Gladysiewicz, L. Janicki, E. Zdanowicz, H. Turski, G. Muziol, C. Skierbiszewski, R. Kudrawiec, JOURNAL OF APPLIED PHYSICS, Volume: 127, Issue: 3, Article Number: 035702, Published: JAN 21 2020 10.1063/1.5121368
  20. Nitride LEDs and Lasers with Buried Tunnel Junctions By: H. Turski, M. Siekacz, G. Muziol, M. Hajdel, S. Stanczyk, M. Zak, M. Chlipala, C. Skierbiszewski, S. Bharadwaj, HG. Xing, D. Jena, ECS Journal of Solid State Science and Technology, Volume: 9, Issue: 1, Article Number: 015018, Published: DEC 5 2019, 10.1149/2.0412001JSS
  21. Influence of InGaN waveguide on injection efficiency in III-nitride laser diodes By: M. Hajdel, G. Muziol, K Nowakowski-Szkudlarek, M. Siekacz, P. Wolny, C. Skierbiszewski , Optica Applicata, Vol. L, No. 2, 2020 , Published January 2020
  22. Optimization of p-type contacts to InGaN-based laser diodes and light emitting diodes grown by plasma assisted molecular beam epitaxy By: K. Nowakowski-Szkudlarek, G. Muziol, M. Zak, M. Hajdel, M. Siekacz, A. Feduniewicz-Zmuda, C. Skierbiszewski, Optica Applicata, Vol. L, No. 2, 2020, DOI: 10.37190/oa200215 (Published January 2020)
  23. Anomalous photocurrent in wide InGaN quantum wells By: A. Bercha, Artem, W. Trzeciakowski, G. Muziol, M. Siekacz, C. Skierbiszewski, OPTICS EXPRESS, Volume: 28, Issue: 4, Pages: 4717-4725, Published: FEB 17 2020 10.1364/OE.382646
  24. Influence of Electron Blocking Layer on Properties of InGaN-Based Laser Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy By: Hajdel, M.; Muziol, G.; Nowakowski-Szkudlarek, K.; Siekacz, M.; Feduniewicz-Zmuda, A., Wolny, P. , Skierbiszewski, C., Acta Phys Polon A Volume: 136, Issue: 4, Pages: 592-596, DOI: 10.12693/APhysPolA.136.593
  25. InGaN blue light emitting micro-diodes with current path defined by tunnel junction By: Krzysztof Gibasiewicz, Agata Bojarska-Cieślińska, Grzegorz Muzioł, Czesław Skierbiszewski, Szymon Grzanka, Anna Kafar, Piotr Perlin, Stephen Najda, and Tadeusz Suski, Optics Letters Vol. 45, Issue 15, pp. 4332-4335 (2020) 10.1364/OL.394629
  26. Revealing inhomogeneous Si incorporation into GaN at the nanometer scale by electrochemical etching By: M. Sawicka, N. Fiuczek, H. Turski, G. Muziol, M. Siekacz, K. Nowakowski-Szkudlarek, A. Feduniewicz-Zmuda, P. Wolny, C. Skierbiszewski, NANOSCALE, Volume: 12, Issue: 10, Pages: 6137-6143, Published: MAR 14 2020 10.1039/c9nr10968d
  27. Stack of two III-nitride laser diodes interconnected by a tunnel junction By: M. Siekacz, G. Muziol, M. Hajdel, M. Żak, K. Nowakowski-Szkudlarek, H. Turski, M. Sawicka, P. Wolny, A. Feduniewicz-Żmuda, S. Stanczyk, J. Moneta, and C. Skierbiszewski, Opt. Express 27, 5784-5791 (2019) 10.1364/OE.27.005784
  28. Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices By: G. Muziol, H. Turski, M. Siekacz, K. Szkudlarek, L. Janicki, M. Baranowski, S. Zolud, R. Kudrawiec, T. Suski, and C. Skierbiszewski; ACS Photonics 6, 1963-1971 (July 2019) doi/10.1021/acsphotonics.9b00327
  29. Optical properties of III-nitride laser diodes with wide InGaN quantum wells By: G. Muziol, M. Hajdel, M. Siekacz, K. Szkudlarek, S. Stanczyk, H. Turski, C. Skierbiszewski; Appl. Phys. Express 12, 072003 (June 2019) DOI 10.7567/1882-0786/ab250e
  30. Extremely long lifetime of III-nitride laser diodes grown by plasma assisted molecular beam epitaxy By: G. Muzioł, M. Siekacz, K. Nowakowski-Szkudlarek, M. Hajdel, J. Smalc-Koziorowska, A. Feduniewicz-Żmuda, E. Grzanka, P. Wolny, H. Turski, P. Wiśniewski, P. Perlin, C. Skierbiszewski, Materials Science in Semiconductor Processing 91, 387-391 Published: MAR 2019 10.1016/j.mssp.2018.12.011
  31. Nitrogen-rich growth for device quality N-polar InGaN/GaN quantum wells by plasma-assisted MBE By: H. Turski, A. Feduniewicz-Żmuda, M. Sawicka, A. Reszka, B. Kowalski, M. Kryśko, P. Wolny, J. Smalc-Koziorowska, M. Siekacz, G. Muziol, K. Nowakowski-Szukudlarek, S. Grzanka, C. Skierbiszewski; Journal of Crystal Growth 512, 208 (Fabruary 2019), doi.org/10.1016/j.jcrysgro.2019.01.034
  32. True-blue laser diodes with tunnel junctions grown monolithically by plasma-assisted molecular beam epitaxy By: C. Skierbiszewski, G. Muziol, K. Nowakowski-Szkudlarek, H. Turski, M. Siekacz, A. Feduniewicz-Zmuda, A. Nowakowska-Szkudlarek, M. Sawicka, and P. Perlin, Applied Physics Express 11, 034103 (2018) 10.7567/APEX.11.034103
  33. Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE By: H. Turski, G. Muzioł, M. Siekacz, P. Wolny, K. Szkudlarek, A. Feduniewicz-Żmuda, K. Dybko, and C. Skierbiszewski, Journal of Crystal Growth 482, 56 (2018) 10.1016/j.jcrysgro.2017.11.001
  34. Aluminum-free nitride laser diodes: waveguiding, electrical and degradation properties By:G. Muziol, H. Turski, M. Siekacz, P. Wolny, J. Borysiuk, S. Grzanka, P. Perlin, and C. Skierbiszewski, Optics Express 25, 33113 (2017) 10.1364/OE.25.033113
Book chapters:

“Laser Diodes Grown by Molecular Beam Epitaxy” by G. Muziol, H. Turski, M. Siekacz, M. Sawicka and C. Skierbiszewski, in Nitride Semiconductor Technology, Power Electronics and Optoelectronic Devices, edited by Fabrizio Roccaforte and Mike Leszczynski (2020) , Wiley – VCH Verlag GmbH &Co. KGaA, Weinheim, Germany, ISBN 978-3-527-34710-0

Patents:

As part of the work on the Project, the following patents were filed:

  1. Distributed feedback laser diode and method of making the same Autors: G. Muzioł, H. Turski, K. Szkudlarek, M. Hajdel, P. Wolny, M. Siekacz, C. Skierbiszewski; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS; Date of filing: 219-07-14; Application No: EP19186184.8; Grant date: 2022-03-30; Patent No: EP3767762; EU
  2. Monolitycznie odwrócona dioda laserowa oparta na azotkach grupy trzeciej stosująca zakopanezłącze tunelowe Autors: H. Turski, G. Muziol, M. Siekacz, C. Skierbiszewski, D. Jena, H. G. Xing; Patent Applicant: Instytut Wysokich Ciśnień PAN; Date of filing: 2020-04-05; Application No: WIPO ST 10/C PL433452; PL
  3. Dwukierunkowa dioda elektroluminescencyjna i sposób wytwarzania takiej diody Autors: M. Żak, G. Muzioł, M. Siekacz, K. Nowakowski-Szkudlarek, H. Turski,C. Skierbiszewski; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS; Date of filing: 2021-08-14; Application No: WIPO ST 10/C PL438744; PL
  4. Bidirectional light emitting diode and method of making the same Autors: M. Żak, G. Muzioł, M. Siekacz, K. Nowakowski-Szkudlarek, H. Turski,C. Skierbiszewski; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS; Date of filing: 2022-03-20 ; Application No: EP22461527.8; EU
  5. Dioda elektroluminescencyjna o zmiennej barwie emisji i sposób wytwarzania takiej diody Autors: M. Żak, H. Turski, M. Chlipała, K. Nowakowski-Szkudlarek, G. Muzioł, M. Hajdel, P. Wolny, C. Skierbiszewski; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS; Date of filing: 2022-02-02; Application No: P.440375; PL
  6. Wavelength tunable light emmiting diode and method of making the same Autors: M. Żak, H. Turski, M. Chlipała, K. Nowakowski-Szkudlarek, G. Muzioł, M. Hajdel, P. Wolny, C. Skierbiszewski; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS; Date of filing: 2022-06-20; Application No: EP22461577.3; EU
  7. Hybrydowa dioda elektroluminescencyjna emitująca pojedyncze fotony i sposób wytwarzania hybrydowej diody elektroluminescencyjnej emitującej pojedyncze fotony Autors: C. Skierbiszewski, J. Sławińska, M. Chlipała, M. Siekacz, K. Oreszczuk, A. Rodek, P. Kossacki; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS/Uniwersytet Warszawski; Date of filing: 2022-02-26; Application No: WIPO ST 10/C PL440480; PL
  8. Hybrid Light Emitting Diode Emitting Single Photons and Method of Fabrication of Hybrid Light Emitting Diode Emitting Single Photons Autors: C. Skierbiszewski, J. Sławińska, M. Chlipała, M. Siekacz, K. Oreszczuk, A. Rodek, P. Kossacki; Patent Applicant: Institute of High Pressure Physics "Unipress", PAS/Uniwersytet Warszawski; Date of filing: 2023-01-19; Application No: EP23152548.6; EU

Blue MBE lasers with Tunnel Junction in the centre of attention of Applied Physics Express readers

Editors of renown journal publishing reports on newest development in applied physics- Applied Physics Express - highlited the paper about laser diodes with tunnel junction authored by MBE Group from UNIPRESS in collaboration with TopGaN. It is an appreciation that results reported in the paper are very interesting and worth sharing with larger amount of readers. Articles placed in the "Spotlights" section are available in OpenAccess.

Thanks to use of tunnel junction in LD's construction one can overcome techologically problematic p-type contact metallization. Moreover such a solution opens up new paths for constructing innovative devices such as cascade laser diodes or distributed feedback lasers. Click on the picture to access the paper.

Stack of two laser diodes interconnected by a tunnel junction

We demonstrated a stack of two III-nitride laser diodes interconnected by a tunnel junction grown by plasma-assisted molecular beam epitaxy (PAMBE). The most important advantage of laser diode stacks is extremely high slope efficiency. We show the impact of the design of tunnel junction. In particular, we show that, apart from the beneficial piezoelectric polarization inside the TJ, heavy doping reduces the differential resistivity even further. The device starts to lase at a wavelength of 459 nm with a slope efficiency (SE) of 0.7 W/A followed by lasing at 456 nm from the second active region doubling the total SE to 1.4 W/A. This demonstration opens new possibilities for the fabrication of stacks of ultraviolet and visible high power pulsed III-nitride LD. Similar attractive possibility is the integration of multiple laser diodes emitting at the same wavelength in order to obtain ultra-high optical power.

(a) emission spectrum of single laser diode, (b) emission spectrum of both stacked laser diodes, (c) slope efficiency for two stacked laser diodes