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l. Introduction to defects

Perfect or ideal crystal lattice —
arrangement of points in 3D space

(a) (b)

Figure 1.1 (a) A space lattice, (b) unit cell showing positions of principal axes.



« Concept of ideal crystal useful to explain -

Some of the properties of crystals (for example:
density, specific heat, and dielectric susceptibility,
Independent of details of crystal structure.

No real crystal is ideal —

Contains faults or flaws (known as defects or
Imperfections).

Many properties of crystals (e.g. mechanical strength,
electric conductivity, mangetic hysteresis, etc.) are
very sensitive to the extent of imperfections in them.



Type of defects in crystals

- Thermal vibrations of atoms

O Point defects

vacancies, interstitial atoms, and impurity atoms (chemical
contamination)

1 Line defects
Dislocations: edge, screw, and mixed

2 Planar defects

External surfaces of crystals, internal surfaces in crystals (grain
boundaries, twin boundaries, and stacking faults)

3 Volume defects



Il. Types of point defecis: examples
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Figure 1.10 (a) Vacancy,
(b) self-interstitial atom in an
(001) plane of a simple cubic
lattice.
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Figure 1.11 (a) Substitutional
impurity atom, (b) interstitial

impurity atom. MISSIHg pOIﬂtS andlor
displacement of missing
points to interstitial sites
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Schottky and Frenkel defects
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Figure 1.12 Sodium chloride structure which consists of two interpenetrating
face-centred cubic lattices of the two types of atom, with the corner of one

located at the point 4, 0, 0 of the other.

Figure 3 Production of lattice vacancy by the solution of CaCl, in KCI: to
ensure electrical neutrality a positive ion vacancy is introduced into the lat-

tice with each divalent cation Ca**. The two Cl~ ions of CaCl, enter normal
negative ion sites.

Example:
KCI:CaCl,

@® sodiumion

(O  chlorine ion

zmiana gestosci Ap

Figure 2 Schottky and Frenkel defects in an ionic crystal. The arrows in-
dicate the displacement of the ions. In a Schottky defect the ion ends up on

the surface of the crystal; in a Frenkel defect it is removed to an interstitial
position..

25+ 1074

[Ca*)[K]

Change in the density p of KCI with CaCl, concentration.

From Kittel .



A.J. Dekker, Solid State
Physics, MacMillan, London

lll. Statistics of point defects "

Natural source of point defects If E is the total energy to separate
all N crystal atoms from each other,
the sublimation energy per atom is:

4 S N Energy &= EIN.
e« o B e I ' For an atom of potential energy & in
£ D, 2(.0 . the interior of the crystal, the
4( 3 dissociation energy of the crystal is
L B . . Neg /2.
— LFosition .
R Obviously, ¢ = g/2.
(a) {b)
_Fig. 3—5.‘ chuence of jumps producing a vacancy.which migrates Therefore, the energy ¢V = EV
into the interior of the crystal (a). In (b) the potential energy of the .
vacancy is shown schematically as it diffuses in; the limiting value reqU|red tO tl’anSfeI’ an atom from the
¢, is the energy of formation, &, is the jump activation energy of the . . 2
vacancy, interior to the surface (i.e. to form a
vacancy) is:
- Presence of phonons b =c—-a-—s=8a—&

- Absorption of phonons
For Cu metal, ¢, = 3.5 ev.

& — Jump activation energy With @, = ¢, , this gives
of vacancy @, ~1.7ev=170 kd/mol
@, — energy for creation of Observed ¢, = 1.4 ey,

vacancy (= Ey) g~ 0.5 ev =50 kJ/mol



A.J. Dekker, Solid State

il I Physics, MacMillan, London
Thermal equilibrium  Pee
Concentration (fraction) of vacancies e
Thermodynamic parameters where:
for a system: N — normal lattice sites
' n - number of defects
Thermal free energy (3N-3n2) oscillators - TS,
or Helmholtz free energy: F of frequency v et b
Internal energy: E 3nz oscillators ?gura_'ionafl ey fom us
. unction of the fraction of vacant
Entro Of the S Stem S Of frequency A% lattice sites n/N. The minimum
py y Z — number of atoms of the free energy F determines

the equilibrium value of n/N.

Equation for free energy: surrounding a vacancy

F=E- -I_-S' We use Stirling’s formula for x >> 1: Inx! = xInx.
Change in system free energy: _
AFE = AE — TAS. For metals.

n exp AS,, exp ak, exp| E,
AE = nEy (1 —-aT), N +n K K, keT |
AS = ASei+ Asty, Handbook equation
where:
ASes = kg IN[(N+n)YNIN], n~Nexp(-E, /kgT).
ASy = 3zkg In(viv’) Two parameters:

E,and T



Concentration of other defects

Concentration of Frenkel
defects in metals:

n E
=Kexp| ——=— |
(NN")¥ p( 2kBTj

Concentration of Schottky
defects in ionic crystals:

E
N_k exp| - —
N 2k, T

n
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Figure 1.10 (a) Vacancy,
(b) self-interstitial atom in an
(001) plane of a simple cubic
lattice.

- number of defects

N — normal lattice sites

N’ -

interstitial sites

Origin of Factor 2 ?



IV. Diffusion in crystals
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(a) (b) (e)
Figure 4 Three basic mechanisms of diffusion: (a) Interchange by rotation
about a midpoint. More than two atoms may rotate together. (b) Migration

through interstitial sites. (c) Atoms exchange position with vacant lattice
sites. (From Seitz.)

Diffusion coefficient D in vacancy diffusion

D=v52exp£— EV+AHmJ
R.T

Diffusion coefficient D In interstitial diffusion

D =vs° exp(— AR, )
RsT

v - jump frequency

d - jJump distance

Rg = kgN, - gas constant
AH_, — enthalpy of melting
AH,, — enthalpy of boiling

Estimation of some energies

For evaporation: Trouton rule
AH, ~10R.T,

For melting: empirical trend
AH = &R T,
with the factor

&= 2, for metals;
&= 3, for inorganic salts.

For Cu,
T,=2835K, T, =1358 K,
one obtains
AH, = 235.7 kd/mol = 2.4 eV
AH_ = 33.9 kd/mol = 0.34 eV
&=AH, +AH, = 2.74 eV




V. Methods for creation of point
defects

1. Quenching from high temperature
2. Strong deformation I.e. plastic treatment
(forging or rolling)
3. Bombardment by ions or high-energy charged particles
4. Growth processes (doping)

Two modes:

- Energy supplied by different means:
thermal, mechanical, energy transfer

- structural changes




VI. Point defects during crystal

growth

Rough steps:
- vacancies,

Mechanism: Structure of elementary steps | - Impurities.

"g)x30 um

Figure 6. Example of KDP crystal surfaces
preserved by pulling through hexane. (a) shows
sghema(ic of crystal structure. (b and c¢) Growth
hillocks on the (b) {101} and (c) {100} face Figure 9. Coarsening of islands and steps on KDP

generated by dislocations emanating from the {101}. With time, the material from the islands
seed crystal interface. diffuses to the steps which in turn exhibit smoothing.

J.J. De Yoreo et al., in: Advances in Crystal Growth,
Eds. K. Sato et al., Elsevier, 2001, p. 361-380.

Fig.4.8a,b. Consecutive acts of en-
trapment of an impurity particle
(shaded cube) during the building
of a row with host particles

b (open cubes)
(@)
KINK SITES
(b)
STEPS

TERRACES

Figure 3.5 Kev surface structures on an idealized crystal face: (a)
kinks: (b) steps: and (c) terraces. Adsorbed impurities at cach of
these sites is illustrated. (Reproduced with permission from Mullin
1980.)



Examples of images of segregation
of Impurities

Fig. 6. Top_ographs of the two (010) slices cut out of an as grown KBC crys
slice, ref. 120; MoK a.

Sectorial nonuniformity as a result of
different trapping in different growth
sectors

Zonal nonuniformity in the same sector
due to nonuniform growth rate

Growth bands or
Impurity striations

b

Fig. 8. Topographs of an as grown KBC crystal obtained at 47°C in an aged solution: (a) ref. 020; (b) ref. 200: MoK a.



Examples and comments

TABLE 2.4

Segregation coefficients in alkali halidest

Host Solute Segregation coefficient
Aqueous solution Melt
NacCl Li 0.007 +0.004 0.21, 0.20+0.05, 0.19
K 0.005 £ 0.001 0.20, 0.008 +0.003
Br 0.047 +0.005 0.6
I <4x10* 0.06
KClI Na <6x107% 0.03, 0.11+0.02, 0.31
Rb 0.113 +0.005 0.68, 0.6 +0.1, 0.70
Cs 0.0040 +0.0006 0.16, 0.21
Br 0.189 +0.003 0.75, 0.71
In <0.001 0.14
KBr Rb 0.334+0.004 0.78,0.4+0.1, 0.75
Cl 0.453 +£0.005 0.86, 0.85
1 0.039 +0.004 0.5, 0.52
KI Rb 0.82 +0.03 0.76 +0.02
Cs 0.03 +0.01 0.31+0.01
€l 0.015+0.02 0.39+0.02
Br 0.42 +0.02 0.79+0.02
NO; 0.071 +0.004 0.43+0.01

t Based on the data of Andreev (1967, 1969), Ikeya er al. (1968) and Gross

(1970a, b).

Brice (1973)

Fraction in crystal

Segregation coefficient k depends
on structure and difference in size
of atoms, ions and molecules in
the common crystal lattice.

0.5F

Fraction in solution

Fig. 2.20. The fractions in the solid
and in aqueous solution of (a) copper
sulphate and (b) ammonium sulphate
in mixed crystals with potassium sul-
phate.



VII. Capture of impurities in crystals

Podstawowa literatura:

K. Sangwal, Addititives and Crystallization Processes:
From Fundamentals to Applications, Wiley, Chichester,
2007, chap. 9.

Large deformation of lattice does not favor | |
capture of impurity atoms in it. e —————————

Impurities captured in crystal lattice are:

1) individual atoms, ions, molecules or complexes of molecular dimensions like

dimers and trimers; uniform impurity capture. Solid solution is formed when

Cisolid = CiLiquia (thermodynamically equilibrium capture of impurities) or Cigyig #

CiLiquia (NONequilibrium impurity capture).

* Colloidal inclusions of micrometer dimensions; nonuniform capture of

impurities.

Concentration and distribution of uniform and nonuniform capture of an
Impurity are different in the crystal volume due to thermal
nonequilibrium at crystal-liquid interface.

Nonuniform capture occurs:

1) in different growth sectors of a crystal (sectorial nonuniformity),

2) In a given growth sector (zonal nonuniformity; growth bands, impurity striations),

3) In the vicinity of structural defects such as dislocations and grain and twin boudaries as
enrichment or depletion of impurity (structural nonuniformity).

ation: vacan



Distribution coefficient of impurities Concentrations [C] and [A]

When impurity C (i) enters the substance A (s):

in atomic/ionic fraction,
weight fracrion or as mass

segregation coefficient in volume.
3 [Coiia] " [C liquid I+[A liquid ] (1) Crystal
d — [l
[Coiia ]+ [A g ] [Cliquid] .
When [C] << [A],
ky<1
o — [Coia] [Piqui] 5
, = _ 2) .
[Cliquid] [Asolid] )
In the case of growth from the melt ko> 1
K. ~ [Ceoiia]
d ™~ [C ] ! (3)
liquid Distance from interfface ———
H HP 2 Figure 9.2 Schematic illustration of the dependence of x, /x, on distance from the crystal-
When concentration is in mOIe fraCtlon solution interface, and relationship between x; /x, at the ({rl\'sm/—/jye(//'um( inl(*r/}—z(':) (m\(/ the
X / X segregation coefficient ky. Adapted from Rimstidt et al. (1998)
ky =—2—, (4) | S—solid
Xi [ Xy L - liquid

ko depends on physico-chemical properties
of crystal and impurity.

Ketf depends on the nature of crystal-fluid
interface; Kerr (Smooth interface) < Kes
(rough interface).

Segregation of impurities
1. Equilibrium (supersaturation ¢ = 0)
Equilibrium segregation coefficient ko
2. Nonequilibrium (o > 0)
Effective segregation coefficient Kes



Equilibrium segregation coefficient

2) Thermodynamic approach:
Ink, = Ink,(0)—AG/R,T.
where: k,(0) is the value of k, when
I, = rg, and AG is the change in the
difference in the free energy.

1) Two-component mixture approach:

For C to enter A the theoretical description
IS similar to that of phase diagrams for
two-component systems

In the case of C in A:

AHA(1 1) AHS(1 1
Ink,=—"|=-— |- Zm|=_ - |
Re \T TA) R, (T T

X

Other approaches are based on: difference
in volumes, heat of sublimation, diffusion
coefficient, etc.

In the case of mismatch of volume fraction
AVIVaat a given temperature:

Ink,, = B, +B,AV /V,
=A-B+B(r/r)’.

s

y

0.5

SEGREGATION COEFFICIENT, K x 10 4
/

0.2

Distribution coefficient

Q41

101

Figure 3.7 Logarithm of the segregation coefficient versus 1/ ] for
copper in silicon crystals. (Reprinted with permission from C.D. ) o ) _ o )
Thurmond and J.D. Struthers (i953). J. Phys. Chem. 57. 331-835. Fig. 2.21. Distribution coefficients in zinc tungstate as a function of the cube of
Copyright 1953 American Chemical Society.) thie fotlic wmdios.

o
O
a

0.5 1.0 1.5
Cube of ionic radius 4°



When change in free energy is due to mismatch
(ri-rs) of sizes of atoms/ions:

47EN, (1 1
Inky =Inky(0) ———2| =r,(r-r)* -=(r-r.)° |,
0 O() RGT 23(| S) 3(| S)

where E — Young’s modulus.

0.8 T T T
04} 1
0.0
_ [Ink, =2.44-2.349r3; RC 0.9968
05 T i T A T T T \1,
o —04r 4
c
Ink,=0.43-30.9 £(r); RC 0.996 -
- -0.8 - §
A2} 1
T Ink, =7.95-7.860r; RC 0.9918]
o —05F -1.6 g ' '
E 0.8 1.0 12 14 1.6
r,(107%my); r2 (10739 md)
-1.0 - Ce* Figure 9.6 Logarithm of equilibrium segregation coefficient k, of various rare earths in cubic
210, stabilized with Y,0; against additive cationic radii r, and r.*. The cationic radii r, and
1;* are due to Shannon, with coordination number 8. Data from Rémer et al. (1994)
15 '

0.00 0.01 0.02 0.03 0.04 0.05 0.06
ro(ri—r)2/2 + (ri—ry)%/3

Figure 9.5 logarithm of equilibrium segregation coefficient k, of various rare earths in cubic
ZrO, stabilized with Y,0; as a function of 3r,(r, —r,)* + 3 (r, — r,)*. Data for Er**, Sm**, and

Nd** are experimental, whereas those for Lu** and Ce** are calculated from Equation (9.24).
Adapted from Rémer et al. (1994)



Some more examples

0-6 T T T 5 T
Ky =—2.84 +2.91r; RC 0.996
0.5 .
10 ; ; ; . . ; _
i
o | [Inks=—4.92+13.56 (1/r,)*; RC 0.986 ] el ]
«0
8 =gt | 8 03f elLa 1
T 7r a g 0.2+ 7
QF -
€ 6t .
. 01} . -
Yb a
5 § 7 0 o Lu 1 1 :/ 1 1
4l ® | '0.95 1.00 1.05 1.10 115 1.20 1.25
Gat* lonic radius r; (107'° m)
3 1 1 1 - 1 1
06 07 08 09 10 141 12 13 Figure 9.9 Plot of k. for various lanthanide ions in gypsum crystals against their radii r.
(r/r)® (=) Data from de Vreugd et al. (1994)
Figure 9.8 Logarithm of k for various trivalent rare earth metal ions in calcite as a function
of (r./r.)*. The effective ionic radius, due to Shannon, is in six-fold coordination. The extremely
deviating point for (r./r,)’ = 0.78 was excluded while fitting the data. Data from Rimsticlt
etal. (1998)
1~0 T % N T
] Soln Melt Salt
NaCl +
0.8 v NaCl-| 7
Kl +
Kl -
06 k. KCl + il
-
=
04+ Av ‘_-'V 7
K |
o
02 _
0.0 m e
0.6 0.8 14

Figure 9.10 Dependence of segregation coefficient k, of cations and anions in different
alkali metal halides grown from aqueous solutions and from the melt on their Shannon radii
r., with coordination number 8 or 9. Data from Brice (1973). Additive cations and anions are
denoted by + and —, respectively, in the inset



Effective segregation coefficient
1) Bulk diffusion model of Burton et al. (1953):
— k0
Kot = k, +(1—k,)exp(-RS /D)’ (1)

where: ¢ - thickness of diffusion layer,
D — diffusion coefficient of impurity in the solution.

For k, <<1
Ker =Ko €Xp(RS /D) )

T T T I
|

| g

10 —e IS SR . S—
From the plots || o 14 rm
6/D — 30 _ 150 S/m " @® 1440 rpm 8/D (s/cm)
. | 150 (360) I
Since D = 1012 — 10° cm?/s, T 6 I /e;o
6=0.3-1.5nm. 3
T~ 100 (260) R PrTES S
_-"-;3(130)
0 i i i 1
0 20 40 60 80

Growth rate R (um/s)

Figure 9.11 Dependence of segregation coefficient k.; of Sb in Ge crystals on growth rate R
for different stirring conditions. Solid curves were drawn according to the BPS Equation (9.26)
due to Burton et al. (1953), and dashed lines are according to the linear dependence in
Equation (9.28). The values of 8/D for the linear dependence are given in parentheses.
Adapted from Burton et al. (1953)



2) Approach involving diffusion-relaxation

Hall (1953), Kitamura and Sunagawa (1977),
and Chernov (1984):

keff = I(o +(K,gs — ko) exp(_Ri IR), (1)

ads
with
R =h/t
Whel’e Figure 9.12 Different positions of trapped impurity particles: (A) trapped in a kink,
h _ th'CkneSS Of Step on gI‘OWIng Surface (B) trapped in a step ledge by solute particles from both sides, and (C) trapped in the surface
) terrace
T - time interval for the growth of successive
layers,
K,q4s — Segregation coefficient of the impurity in

the adsorption layer.

T
When k, << 1, =36 -\.'\\ —

keff = kads exp(_Ri / R)1 (2) g-zz» . | . I
and when R R << 1, - | ]
-2.6 -
K, =K., —k . (R/R). 3) P e i o |
1/[R (nm/s)]

Figure 9.13 Plot of In(k.; — k) of Pb** ions in BaNOy crystals against 1/R; impurity concen-
tration ¢; in the solution about 10 mol%. Adapted from Tsuchiyama et al. (1981)



3) Approach based on statistical selection

Voronkov, Chernov (1967):

k
K. = 0 , 1
M1y o O const )

where: o — constant.

const

When O-/O-const <<1’

keff = k0 _ kOO-/O-const (2)

Natural statistical selection depends
on kinetics of attachment and
detachment of impurity particles

at kinks in steps.

(a)
0.024 . . ; :
(110) (031) ¢, (%)
[ ] O 0.34
L A A 148
0.020 [ ] o 27
* o 37
S v v: 5.5
|
< 0.016
xﬂ)
0012} —
0.008 : : : '
0.00 0.03 0.06 0.09 0.12
c(-)
(b)
4.0 : . -

0.00 0.05 0.10 0.15 0.20
c(-)

Figure 9.15 Dependence of effective segregation coefficient k.; of additive ions for two
different faces of crystals grown from aqueous solutions on supersaturation o: (a) CrO,*"
ions in the (110) and (031) faces of K,SO, crystals and (b) Ni** ions in the (001) and
(110) faces of ZnK, (SO,), - 6H,O crystals. Curves were drawn according to Equation (9.43)
with different values of n,: (a) n, = —0.5 (continuous curve) and —0.8 (dashed curve), and
(b) ny = 0.5 (continuous curve) and 0.8 (dashed curve). Original data are from Zhmurova
and Khaimov-Mal’kov (1970b). Adapted from Sangwal and Pafczyriska (2000)



4) Approach based on surface adsorption

Assumptions:

1) Impurity particles compete with
particles of crystallizing substance.

2) Increase in supersaturation o leads to
increase in the density of kinks in steps.

3) K = Ky Hf(Kink density)
= Ko +fiink(1-0)/0 (1)

where:

fin — fraction of kink sites on the
surface of a crystal growing at

supersaturation o;
0 - total surface coverage

(9 = esolute + eimp)-

0.20
ko=0.1 .
B,=0
0.25
0.16 o N
= ,'/ ’4’ g
N ’
012t 7 1[ -0.75
= -0.75(0.11)
—05 —0.25
0‘08 1 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
o (-)

Figure 9.16 lllustrative plots of the dependence of k. of additive in an imaginary crystal
on supersaturation o predicted from Equation (9.43) for different values of n, with constant
B, > 0. This case represents k, < 1. Adapted from Sangwal and Patczyriska (2000)

For Langmuir adsorption isotherm:

Bo' ™
Ky =K, +—— 2
TP K +Kee @)
#—C +C,C
ke (3)

For Freundlich adsorption isotherm
k, =k, +B,c"™/c", (4)

where:

B,, B,, m, C, and C, — constants;
K, K; — Langmuir constants;

n, — a measure of barrier associated
with the effect of supersaturation o.



Bo' ™ | ' ‘ ]
k = kO + L (2) 03} | oce 1
K.c, +K.c -2

Kot (=)

k. =k +B,c""/c", (4)

0.30 T T T T T
¢, (mole frac.)
® 246x107%|
024116 492x10*
m 7.37x107* . . ) o 3
048 | | 860x107 i Figure 9.18 Segregation coefficient k. of various lanthanides in gypsum crystals as a func-
T A 172x107° tion of supersaturation o. Impurity concentration: 3 x 10~* M lanthanides and 4.4 x 10~* M
= A
2 | Cd**. Adapted from de Vreugd et al. (1994)
0.06 4 1
=C,+Cc (3)
0 12 k —_

6
6 (%) eff 0

Figure 9.17 Segregation coefficient ko of Cu®* ions in AO crystals as a function of supersat-

uration o for different impurity concentrations c¢;. Reproduced from E. Mielniczek-Brzdska, K. 4 T T T T T
Gietzak-Kocwin, and K. Sangwal. ). Cryst. Growth 212, 532. Copyright (2000), with permis-
sion from Elsevier B Al(lll) 318.15
Fe(lll) 308.15
AO — ammonium oxalate monohydrate 3t :
—~
L
—
(a) 03 I’\O
: . T T T IS, | |
< 2
=
o]
4
=
i
0.2+t 4
o~ o
D - 1F i
3
<
0.1 4
O 1 s
0 1 2 3
- , ‘ ‘ . 10%c; (mole fraction)
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Ot/ ADP — ammonium dihydrogen phosphate’;
figure 9.21  Plots of kg for (a) Cu** and (b) Fe** in AO crystals against o, /c.™. Reproduced antisolvent Crysta.”ization;
from K. Sangwal, E. Mielniczek-Brzoska, and J. Borc. |. Cryst. Growth 244, 183. Copyright Sangwa| etal. JCG 614 (2023) 127235
(2002), with permission from Elsevier ’




Relationship between Kk
and face growth rate R

1.2 T T T T T

0.8

keﬂ (_)

From the relation
R~A(c-ao,)", °er
one obtains

L

4 8 12 16 20
Growth rate R (mm/h)

Figure 9.22 Dependence of effective segregation coefficient k. of three rare earth ions in

cubic zirconium dioxide crystals on growth rate R. The crystals were grown by the scull
k k BZO-C 82 1/n melting technique. Data from Rémer et al. (1994)
ef = | Ko m T 1/nm .
Ci A Ci 0.20 ; : : .
kyy=—23.5%107* + 1.31x10* R; RC=0.94
®
0.15 .
@
- ®
= 010} 8
= °
°
0.05 o, ]
000 1 1 1 1
0.0 0.3 0.6 0.9 1.2 1.5

Growth rate R (1074s™")

Figure 9.23 Dependence of k. of La** ions in gypsum crystals on growth rate R. Original
data from de Vreugd et al. (1994)



Threshold supersaturation for
capture of imputies during
growth

From the plots k.x(0), one obtains oy

keff — p(G—O'O).

From the theory of inhibition of face
growth rate by impurity, we have the
dependence:

1 1 1
+
o, Kc,

where: g, — constant, K — Langmuir
constant.

T T T T
¢ (mole frac.)
4| O a70x10° 4
® 9.38x10°
[l O 141x10"
s~ 3 i
o
= | O
50 |
= AO
1L i
0 beeme==p==--77 L
0.00 0.05 0.20

Fig. 1. Plots of k. of Mn(Il) ions against ¢ for different c;.
Note two distinct linear dependences in the ranges of ke <5 x
10~* and > 5 x 1074

1/0g, 1/6*

0 1 1 1 1
0.0 0.5 1.0 15 2.0 2.5
10%/[c; (mole frac.)]

Figure 9.26 Dependence of 1/a, and 1/a* on 1/¢; of Mn** impurity according to Equa-
tion (9.53). The plot was drawn for o*(c;) data. Reproduced from K. Sangwal and E.
Mielniczek-Brzdska. ). Cryst. Growth 257, 185. Copyright (2003), with permission from Else-

vier
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