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Calculations Abstract Experiment
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Fig.7 Experimental and theoretical d-plots of UD90 and UD96 nano-diamond powders.
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Fig.4 Experimental scattering factors of
microdiamond, and UD96 powders as
synthesized and annealed at 1200°C for 1 h.

Fig.5 Experimental G(r) plots obtained for
S(Q)s of Fig. 5.

Figs. 7-10 show experimental d-plots along with those obtained for models with three density modulation waves
present between the grain core and the surface shell, c.f. Fig. 3(d). In Figs. 7-10 the broken lines mark the average
lattice parameters as refined for full r-range with the PDFgui program, which are also equal to the average lattice
parameters calculated for the corresponding models.

Figs. 5 and 6.

7. The observed changes in the inner structure of the nanocrystals of diamond observed
after sample treatments could be explained by changes in the graphite-like over-layer covering
the diamond-structured part of the nanocrystallite.
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