Print 

Our Offer

 
Please call or email us!
+48 22 632 16 35
+48 664 446 092
This email address is being protected from spambots. You need JavaScript enabled to view it.

We offer you our high pressure high temperature equipment, typical experimental setup for gallium nitride (GaN) crystal growth with the high nitrogen pressure solution (HNPS) method (for details see [1]). Vertically positioned, technological gas pressure chambers (reactors) with an internal diameter of 4, 6 and 10 cm (allowing graphite or boron nitride crucible with working volume of 10, 25 and 150 cm3) can be used. Maximum gas (nitrogen or argon) pressure is 1 GPa (10 000 atmospheres). Multizone cylindrical graphite furnaces, capable of reaching temperatures up to 2000 K, can be placed inside the gas pressure reactors. The chambers are equipped with additional systems necessary for annealing in vacuum, cooling of the reactor, electronic stabilization and programming of pressure and temperature. To monitor the temperature during the experiments, PtRh6%–PtRh30% thermocouples are used. They are arranged along the furnace and coupled with the input power control electronic systems. The pressure is measured by manganin gauges positioned in the low temperature zone of the reactor. The pressure and the temperature are stabilized with an accuracy of 1 MPa and 0.1 K, respectively.

Typically a sample (covered by a special cap if needed) is placed in the crucible and heated in the furnace inside the high pressure reactor with a constant rate (from 0.1 K/h to 1600 K/h) to a given temperature (from 500 K to 2000 K). Then, the system is annealed at these conditions under high nitrogen pressure (1 GPa or less) for a given time from 0.1 sec to 1000 h. After that, the furnace is cooled down at a constant rate (maximum 200 K/min), the system is decompressed, and the sample is removed.

Some references of our work:
[1] M. Bockowski, P. Strak, I.Grzegory, S. Porowski, “High Pressure Solution Growth of Gallium Nitride” in Technology of Gallium Nitride Crystal Growth ed. by D. Ehrentraut, E. Meissner, M. Bockowski, Springer Series in Materials Science 133, Springer, (2010), 207
[2] M. M. Smedskjaer, S. J. Rzoska, M Bockowski and J. C. Mauro “Mixed alkaline earth effect in the compressibility of aluminosilicate glasses”, JOURNAL OF CHEMICAL PHYSICS 140, 054511 (2014)
[3] A. Kaminska, C-G. Ma, M.G. Brik, A. Kozanecki, M. Bockowski, E. Alves, A. Suchocki, “Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies”, JOURNAL OF PHYSICS-CONDENSED MATTER 24 Issue: 9 (2012)
[4] K. Lorenz, S.M.C. Miranda, E. Alves, I.S. Roqan, K.P. O'Donnell, M. Bockowski, “High pressure annealing of Europium implanted GaN”, GALLIUM NITRIDE MATERIALS AND DEVICES VII Book Series: Proceedings of SPIE Volume: 8262 Article Number: 82620C (2012)
[5] K. Lorenz, E.  Alves, I.S.  Roqan, K.P.  ODonnell, A. Nishikawa, Y  Fujiwara, M. Bockowski, “Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy”, APPLIED PHYSICS LETTERSVolume: 97 Issue: 11 Article Number: 111911 (2010)
[6] I.S. Roqan, K. P. O. O’Donnell, R. W. Martin, P. R. Edwards, S. F. Song, A. Vantomme, K. Lorenz, E. Alves, M. Bockowski, “Identyfication of the prime optical center in GaN:Eu3+”, PHYSICAL REVIEW B 81, (2010), 1

 

 

High pressure equipment High pressure high temperature equipment