The high gas pressure HIP influence on structure and transport properties of MgB2 superconductors of single and multicore composition

T. Cetner¹, A.Morawski¹, M.Rindfleisch², M.Tomsic², A.Presz¹, D.Gajda³, A.Zaleski⁴, A.Tkachenko⁴

Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa. Poland
Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212, United States
International Laboratory of High Magnetic Fields and Low Temperature, Gajowicka 95, 53-421 Wroclaw, Poland
Instytut of Low Temperature and Structure Research Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw,

Poland

ICMC Conference

Wroclaw

July 2010

< ロ ト < 同 ト < 三 ト < 三 ト

Preparation of Wires

PIT

HIP

SEM results

powder density

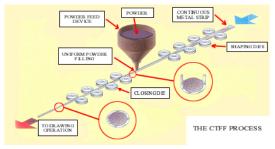
grain sizes

barrier quality

Critical current

improvement example

Fp shift


Summary

イロト イポト イヨト イヨト

э.

PIT (Powder In Tube) wires prepared by Hyper Tech, USA

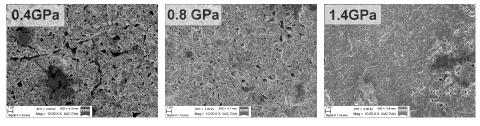
CTFF - continuous tube forming and filling

Composition of wires

Table 1 Structure and chemical composition of wires annealed through HIP

wire ID	no. of cores	barrier	core sheath	outer sheath	B source	Mg to B ratio	additive	d [mm]	fill factor [%]
03	6	Nb	Cu	Monel	SMI	1:2	С	0.83	17.7
18	6	Nb	Cu	Cu	99B	1.10:2	SiC	0.83	14.9
22	18	Fe	Cu	Glidcop	Ts	1:2	C4H6O3	0.83	13.9
30	6	Nb	Cu	Monel	99B	1.10:2	SiC	0.83	15.0
43	18	Nb	Cu	Monel	99B	1.10:2	-	0.83	15.0
70	1	Fe	Cu	-	Ts	1:2	C4H6O3	0.83	28.7
76	6	Nb	Cu	Glidcop	99B	1.10:2	SiC	0.83	16.6
92	6	Nb	Cu	Cu	99B	1.10:2	-	0.83	19.4

T. Cetner¹, A.Morawski¹, M.Rindfleisch², M.Tomsic², A.Presz¹, D.Gajda³, A.Zaleski⁴, A.Tka The high gas pressure HIP influence on structure and transport properties of MgB 3/10


Wires were HIP-ed (Hot Isostatic Pressure) in Argon atmosphere.

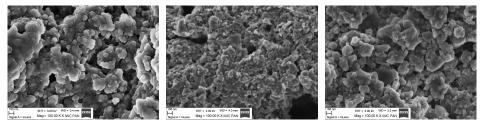
HIP parameters

process ID	temperature [°C]	pressure [kbar]	time [h:min]
I	700	0.001	0:15
II	700	0.01	0:15
III	700	0.2	1:00
IV	700	4	0:30
V	600	8	12:00
VI	700	10	0:15
VII	700	14	0:30

Sample 43 annealed under 3 different pressures

0.4GPa / 700 / 30min

0.8GPa / 600 / 12h


1.4GPa / 700 / 30min

Significant improvemet!

Number of visible gaps in superconducting core is reduced with higher pressure of HIP

SEM results grain sizes

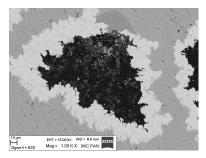
Sample 22 annealed under 3 different pressures

1bar / 700 / 15min

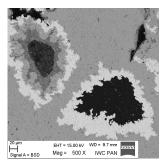
0.8GPa / 600 / 12h

1.4GPa / 700 / 30min

A (10) F (10)


No visible effect

Grain sizes for 1bar and 1.4GPa are similar.

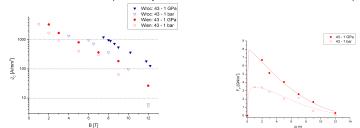

There is a difference for 0.8GPa, but related to lower temperature.

SEM results barrier quality

Sample 18 annealed under 2 different pressures

1bar / 700 / 15min

A (10) < A (10) < A (10)</p>


1.4GPa / 700 / 30min

Barrier defects significant under high pressure

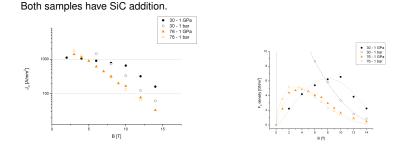
Minor defect under 1bar results in a local reaction

Any defect under high pressure causes destruction of the whole core

Sample 43 annealed under 2 different pressures

Measurements done independently in Wroclaw and Wien on different wire samples.

Improvement


Both measurements show increase in j_C for HIP at 1GPa

(difference in *j_C* between Wroclaw and Wien may be caused defect in Wien samples, different joints, distance beetwen probes etc.)

Pinning force significantly increased after HIP at 1GPa.

Critical current Fp shift

Samples 30 and 76 annealed under 2 different pressures

For both wires HIP at 1GPa caused increse in j_C and F_P at high B, but a decrease at lower B. Observed shift towards higher B at F_P plot indicates formation on intra-grain pinning centers.

- Superconducting MgB₂ wires of various sheath/barrier material and additives were annealed at various conditions
- High pressure proved to increase density of superconducting core
- Significance of barrier quality at higher pressure was shown with SEM pictures
- HIP improved critical current density and pinning force for many of used wires (not all)
- With SiC addition HIP improved wire parameters at high magnetic field

Thank you!

- Superconducting MgB₂ wires of various sheath/barrier material and additives were annealed at various conditions
- High pressure proved to increase density of superconducting core
- Significance of barrier quality at higher pressure was shown with SEM pictures
- HIP improved critical current density and pinning force for many of used wires (not all)
- With SiC addition HIP improved wire parameters at high magnetic field

Thank you!

- Superconducting MgB₂ wires of various sheath/barrier material and additives were annealed at various conditions
- High pressure proved to increase density of superconducting core
- Significance of barrier quality at higher pressure was shown with SEM pictures
- HIP improved critical current density and pinning force for many of used wires (not all)
- With SiC addition HIP improved wire parameters at high magnetic field

Thank you!

- Superconducting MgB₂ wires of various sheath/barrier material and additives were annealed at various conditions
- High pressure proved to increase density of superconducting core
- Significance of barrier quality at higher pressure was shown with SEM pictures
- HIP improved critical current density and pinning force for many of used wires (not all)
- With SiC addition HIP improved wire parameters at high magnetic field

Thank you!

イロト イポト イヨト イヨト

- Superconducting MgB₂ wires of various sheath/barrier material and additives were annealed at various conditions
- High pressure proved to increase density of superconducting core
- Significance of barrier quality at higher pressure was shown with SEM pictures
- HIP improved critical current density and pinning force for many of used wires (not all)
- With SiC addition HIP improved wire parameters at high magnetic field

Thank you!

< ロ ト < 同 ト < 三 ト < 三 ト